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The flow and heat transfer in closed and open channels are considered. The 
thermal part is solved in a conjugate formulation. In the numerical realiza- 
tion, tetragons are used, as well as automatic region generation and graphic- 
al packets for postprocessor analysis of the results. 

Introduction 

As is known, modeling velocity, temperature, and concentration fields in channels of 
complex form requires the solution of transport equations of Navier-Stokes type. As a rule, 
such flows are two- or three-dimensional, and include initial-section effects, recirculation 
zones, combined influence of natural and induced convection (taking account of buoyancy 
forces), etc. 

In the last twenty years, there has been rapid development both of the mathematical 
models describing complex flows and heat transfer and of the computer base for the solution 
of such models. It is well known that the effective solution of hydrodynamic and thermal 
problems based on the complete Navier-Stokes equations (even with large Reynolds numbers) 
requires the use of superpowerful computers (productivity of the order of 109 flops) and 
is prohibitively expensive. However, the idea of reliable computer simulation of complex 
thermohydraulic processes is so fruitful that its supporters grow in number in proportion 
to the degree of computerizaton of scientific research. 

i. Model of Turbulence 

Although the Navier-Stokes equations themselves are sufficiently difficult to solve, 
in many practical cases the main complexity arises in the closure of a particular model of 
turbulence. As well as conceptual difficulties, there are purely mathematical complexities: 
the initial equations become nonlinear in this case, and have a small parameter in the larg- 
est derivative. 

Most practical models of turbulence are based on the concept of vortex or turbulent 
viscosity and diffusion. The well-known gradient dependence between the pulsational and 
mean flow was determined by Boussinesq. Using the traditional notation, tensor symbolism, 
and the concept of Reynolds stress, this relation may be written in the form 

f oUj 'I 2 
- u; = + 0xi j -T k6 J (i) 

The mixing-path hypothesis for determining v t in Eq. (i) has distinguished itself in 
many practical cases. The popularity of this model results from its simplicity of use and 
its great practical range of applicability. Note, however, that vortex viscosity vanishes 
everywhere that the velocity gradient is zero, and this is far from reality. In addition, 
this model takes no account at all of the conductive transport of turbulence downstream (for 
example, there is a generator of vortices which are then entrained downstream by the mean 
flow). This model takes account of the generation of turbulence by the wall and its subse- 
quent transport to the center of the channel. In addition to the fundamental impossibility 
of taking account of the transport of turbulence by convention and diffusion, purely "techni- 
cal" difficulties arise in specifying the distribution of mixing lengths in channels of com- 
plex cross section. Admittedly, these difficulties may be somewhat reduced by using a modi- 
fication of the model known as the Buleev model [i]. The characteristic dimension of turbu- 
lent transfer in this case is defined as 
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where s is the distance from the point to the channel wall in the direction ~. Equation 
(2) defines L with induced flow in closed channels. In the case of more complex flow (sub- 
merged jets, etc.), the scale of turbulence is approximated by a more complex dependence. 
Simplified expressions for the turbulent viscosity and the thermal diffusivity in the Buleev 
model are written in the form 

~/~, = 0.2 [o (q) f~ (TI) 7"; (3) 

ala, = 0.2 fo (~,n) f, (~l) ~/*; (4)  

[0 (rl) = exp ( - -  ~1); (5 )  

[~ (vl) = [1 - -  exp ( - -  rl)lhl; (6 )  

= 65/7*; (7) 
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| 
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This model may be used for the integration of transport equations in the channel formed by 
a triangular bundle of longitudinally ribbed heat-exchanger tubes, in which a chemically 
reacting gas is used as the heat carrier. Below, the results of these calculations are out- 
lined, and the specifics of heat and mass transfer in the presence of exo- and endothermal 
reactions are considered. 

The deficiencies of the mixing-length hypothesis may be overcome in models based on 
the solution of transport equations for the turbulence characteristics. Models for the trans- 
port of the turbulence scale, defined as V~, where k = uiuj /2, were the first to appear. 
In this case, it is important that the turbulence scale is determined without using the con- 
cept of a gradient relation between the velocity pulsations and the mean flow velocity direct- 
ly from the transport equation. The Kolmogorov-Prandtl expression in this case takes the 
form 

% ---- c, q/k-L, (11)  

where  cp i s  an e m p i r i c a l  c o n s t a n t .  

The a c c u r a t e  t r a n s p o r t  e q u a t i o n  f o r  t h e  k i n e t i c  e n e r g y  may be o b t a i n e d  f rom t h e  N a v i e r -  
S t o k e s  e q u a t i o n s .  For  l a r g e  Reyno ld s  numbers ,  t h e y  t a k e  t h e  form [2] 

cony. dif .  

at + u~ Oxi a& ~ + - -  (12) 

gen. flot. dissip. 

_ , ;  au- ,  _ , J  - . .  
dxy axj ax~ 

The t o t a l  d e r i v a t i v e  o f  t h e  k i n e t i c  e n e r g y  i s  formed on a c c o u n t  o f :  c o n v e c t i o n  o f  t h e  
mean m o t i o n  ( c o n y . ) ,  t u r b u l e n t  d i f f u s i o n  o f  t h e  v e l o c i t y  and p r e s s u r e  p u l s a t i o n s  ( d i f . ) ,  
generation in the interaction of the Reynolds stress with the mean-velocity gradients (gen.), 
and dissipation of the kinetic energy as thermal energy on account of viscous forces (dissip.). 
The flotational (flot.) term takes account of the interaction and mutual conversion of the 
kinetic energy of turbulence to potential energy on account of Archimedes forces. 

Model relations for the terms on the right-hand side must be included in Eq. (12). Using 
the traditional gradient representation for the diffusional term and the Archimedes forces 
and the Kolmogorov concept for the approximation of the dissipative term, the k-th equation 
may be written in the form 
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Fig. i. Types of channels and corresponding flow diagrams (a- 
c); velocity isolines U, m/sec, in ribbed tube bundle (d), with 
U = 0.1Uin (i), 0.50in (2), Uin (3), 1.80in (4), and 2Uin (5); 
in a rectangular channel, v 0 = 0.5 m/sec, z/d e = 0.4 m (e), with 
U = 0.83Uin (i) with0.56Uin (2), 0.52Uin (3), 0.47Uin (4) and 
0.180in (5); and in an element of a plate heat exchanger (f), 
with U = 0.910in (i), 1.83Uin (2), 2.74Uin (3),_3.65Uin (4), 
4.570in (5), 5.48Uin (6), 6.39Uin (7), and 7.3lUin (8). 
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+ ~gi %~t O(~ k3/2 
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(13) 

The empirical quantities o k = 1 and cDc d = 0.08 in this relation are used in many energetic 
models in various works. 

A significant deficiency of the given k model is that the linear dimension (scale) of 
the turbulence L appears in the last formula. In some cases, it may be determined by means 
of simple empirical dependences of the type of the Karman formula. In other cases, the de- 
pendences are more complex, for example those in [i, 2]. 

As is evident from the k-th equation itself, the model with one equation even allows 
(in contrast to the Prandtl equation) the convection and diffusional transport and the previ- 
ous history of the process to be taken into account. However, its applicability is still 
limited by the relatively simple shear flows for which it is possible to determine L. These 
difficulties may be avoided in the model in which the scale of turbulence (or, equivalently, 
the dimensions of the large energy-containing vortices) is described by the transport equa- 
tion. Most commonly, the equation is not written for the scale L itself, but for the combina- 
tion e = k3/2L, which is known as the dissipation rate of the kinetic energy of turbulence. 

The transport equation for the transport of s is obtained from the Navier-Stokes equa- 
tions, and takes the following form for the case of large Re (taking account of the model 
assumptions regarding the diffusion, generation, and dissipation terms appearing there) 

a {,  / aUj  aD, 

To determine the vortex viscosity, the Kolmogorov formula is used 

k2 (15) 
S 
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and the constants in Eqs. (13) and (14) are usually taken from [3], since they are based 
on extensive material regarding free shear flow (cN = 0.09, c I = 1.44, c 2 = 1.92; o k = 1.0, 
o E = 1.3). Equations (13) and (14) are used for many flows, although it must be noted that 
they are not universal. For some cases, other values of the empirical constants are used. 
The region of applicability of the k-e model is expanded if the corresponding functions of 
the flow parameters are introduced instead of the constants. The energetic models of k-e 
type are perhaps the most popular in calculating recirculational flow (where it is diffi- 
cult to obtain the distribution of the linear turbulence scales). Adding algebraic rela- 
tions (to take account of the buoyancy forces and other factors), the range of applicability 
of k-e models may be much expanded. 

The present work does not undertake the description of more complex models, since the 
authors have not had occasion to make use of them. It will simply be noted that models of 
turbulence based on equations of Reynolds-stress transport are sufficiently complex in reali- 
zation and expensive in operation. Therefore, such models, despite their great potential, 
are very rarely used in practice. 

All the foregoing applies to the modeling of large vortices using closed models for 
supergrid scales (large-scale turbulence). The complete Navier-Stokes equations have only 
been solved for the simplest cases (laminar flows at small Re) in the last i00 years, and 
further progress in this direction will be determined by the increase in computer power. 

2. Parabolic Flow in Closed Channels. Initial Equations 

The flow diagram and the types of channels considered are shown in Fig. i. To describe 
the hydrodynamic part of the problem, the model of parabolic flow is employed. In this case, 
consideration is confined to flow with no buoyancy forces (pressure-head flow) and only the 
longitudinal component of the velocity vector is taken into account (this is correct in recti- 
linear channels of constant cross secton at large Reynolds numbers). The model contains 
all the assumptions associated with a Newtonian liquid. The system of transport equations 
is based on continuity, motion, energy, diffusion, and heat-conduction equations. The numeri- 
cal realizaton is based on the finite-element method. 

The initial system of equations is 

aF 0[ 1 0[ (16) 
ou, ~ = Ox~ + ~ (~ + ~')-b-ff-~ J + - ~ j  . (~ + ~,) Ox, j ' 

Ox, - axl .(x+x')--6~ +-3T~ (x+k')-6~J sT; (17) 

pU3 ~ -~ P(D+DT) Oxl J +~ P(D+DT)--~-2 ] +Rh" (18) 

The continuity equation is expediently used in integral form 

,[ pU~ds = const, (19)  
s 

whe re  S i s  t h e  c r o s s  s e c t i o n  o f  t h e  c h a n n e l .  The h e a t - c o n d u c t i o n  e q u a t i o n  i n  t h e  r i b b e d  
w a l l  i s  a d d e d  t o  t h e  s y s t e m  i n  Eqs.  ( 1 6 ) - ( 1 9 )  

02~ O~ 
ox~ + ax-]- = 0. (20) 

The pressure variation - the source term in Eq. (16) - is found from the condition of 
conservation of the mass flow rate through the channel cross section. The turbulent-transfer 
coefficients used in Eqs. (16)-(20) are calculated from the Buleev model. The turbulent 
diffusion coefficients are determined from the relation 

D/D~ = Pr D (~/~) .  (21 ) 

The specific feature of the given problem is that exothermal and endothermal reactions occur 
in the heat carrier. A chemically reacting gas consisting of several components is considered. 
Change in composition of the heat carrier occurs here. The concentration distribution of the 
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Fig. 2. Distribution of velocity (m/see) along the radius in 
turbulent (a) and laminar (b) flow in a ribbed bundle, with 
z/d e = 0.25 (i), 1.0 (2), 3.0 (3), I0.0 (4), 30.0 (5), and 
70.0 (6); temperature distribution, K, along the radius for 
the same bundle (c) with ~ = 15 ~ (i), 3 ~ (2), and 0 (3); dis- 
tribution of C 4 (oxygen) (d) at characteristic points of the 
channel: I) M; 2) E; 3) mean mass value C 4. 

heat-carrier components is described by the convective-diffusion Eq. (18). In view of the 
complexity and unwieldiness of the calculations and procedures for determining the coeffici- 
cients ~, X, Cp, and D of chemically reacting gas, these expressions are not given here, 
and neither are the algorithms and specifics of the calculation of the source terms S m and 
R k in Eqs. (17) and (18), on the assumption that this issue is not fundamental to the solu- 
tion of the initial system. This material may be found in [4]. 

Boundary Conditions and Method of Calculation. To obtain the results given below, simul- 
taneous solution of four partial differential equations describing the three-dimensional (for 
the longitudinal velocity) flow and heat and mass transfer of chemically reacting gas is 
required. The channel cross section is sufficiently complex in form. The given problem is 
far from trivial, and requires the applicaton of an effective numerical method for its solu- 
tion. The finite-element method is used in the Galerkin modification (method of weighted 
discrepancies) [5]. The basis functions adopted are functions of the Langrangian family 
for isoparametric linear of quadratic tetragons. Integration of the initial equations in 
the downstream direction is by means of a two-layer purely implict scheme. The NIKABT 
program has been widely used and tested, without any significant problems associated with 
the convergence or stability of the solution, although it must be noted that oscillations 
of the numerical values in the computation process may be found. Simultaneous reduction 
in size of the element and in the longitudinal integration step significantly reduces the 
scale of the oscillations. 

Solution requires the specification of boundary values at all the boundaries of the 
integration region and values of the given functions at the channel input, where plane pro- 
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Fig. 3. Isotherms in a heat-exchanger 
element (ribbed wall, gas flow): l) 480; 
2) 490; 3) 520; 4) 540; 5) 590; 6) 620; 
7) 640; 8) 670; 9) 680 K. 

files of all the functions (0in, Tin, Ckin) are specified. Neumann conditions are specified 
at the symmetry lines, and at the thermally loaded boundary of the region provision is made 
for the use of heat-transfer boundary conditions of the first, second, and third kinds, as 
well as any combination of these. At the gas-wall heat-transfer surface, conditions of ther- 
mal matching of the temperatures and the normal components of the heat fluxes are satisfied. 

The mathematical model and packet of programs used in the present work may be success- 
fully applied to the description and modeling of a broad class of so-called parabolic flows 
in closed channels of complex form. Some results of numerical experiments are given below, 
with details associated with their conduct. Isolines of the given functions in a rectangu- 
lar channel, a system of two parallel heat-exchanger channels, and a channel formed by a 
triangular bundle of longitudinally ribbed tubes are shown in Fig. I. All these channels 
are elements of heat exchangers of various types (shell-and-tube heat exchangers with smooth 
and ribbed tube bundles and plate heat exchangers). The position of the isolines permits 
judgments regarding the nonuniformity of the velocity and temperature profiles and the ob- 
servation of zones of greatest gradient and stagnant zones in the channels. 

In the case of laminar flow in a ribbed bundle of tubes (Fig. 2a, b), the velocity pro- 
files are less steep than in turbulent conditions, of course. The presence of ribbing leads 
to strong angular nonuniformity of the velocity in the initial section which, in turn, has 
a significant influence on the formation of temperature and concentration fields in the flow. 

The intersection of the curves in Fig. 2c indicates the redistribution of heat fluxes 
in the ribbed wall of the tube. 

Va~i.~Lion in oxygen concentration and the local temperature at characteristic points 
of the channel occurs in different ways (Fig. 2d). There are characteristic surges due to 
the specifics of the chemical reactions in the heat carrier. 

In modeling a rectangular channel, flow in a square channel with different thermal con- 
ditions at the external surface is considered. The local velocity, temperature, and concen- 
tration values in the channel cross sections are calculated [6]. 

The conjugate temperature field in the ribbed wall is shown in Fig. 3. The distinguish- 
ing feature of this case is that the surface ribbing is by means of welded U-shaped grooves, 
and the influence of the contact resistance and the gap on the formation of the temperature 
profile in this structure is investigated. 

One of the most interesting examples realizing the possibility of direct numerical model- 
ing and the finite-element method, in our view, is the calculation of the flow and heat trans- 
fer in elements of plate heat exchangers [6]. This is essentially a thermohydraulic calcula- 
tion of an elementary heat exchanger based on the solution of the basic transport conserva- 
tion equations. As well as the calculation of the local temperature and velocity values (velo- 
city isolines are shown in Fig. I), the distribution of local Nu values along the cold and 
hot sides of the dividing wall is obtained [6]. 
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Fig. 4. Streamlines ~ (a) and isotherms T (b) in transverse 
flow around an inverse projection: a) ~ = -0.04 m2/sec (i), 
0.i (2), 0.16 (3), 0.4 (4), 0.48 (5), -0.54 (6), 0.012 (7), 
0.04 (8), 0.06 (9), 0.09 (10); b) r = 499 K (i), 485 (2), 470 
(3), 460 (4), 440 (5), 420 (6), 403 (7). 

3. Elliptical Flow (Flow around a Pro~ection). Initial Equation~ 

To describe the recirculational flow arising behind a projection and the heat transfer 
between the flow and the ribbed wall in the flow, the following system of equations must 
be solved: 

90j Oxj - Ox~ ~-3-f/-j \ ~ Oxj / 

0(gD~) = 0; (23) 
Oxi 

p0j 0T _ a ( ~ 0T 9u~T); (24) 
Ox~ Oxj Pr Oxi 

Ok 0 (~T 0k / ' "  0bvJ (25) 9Uj Oxj Oxy \ ~k Oxi / --9utui Oxy 9e; 

08 0 ( bT 0~ ) ~ 9UiU)OUi ez (26) 
,o~j O x ~ -  Oxj ~ Ox i - - C 1 T  Oxj c~p k " 

To determine the vortex viscosity, Eq. (15) is added to the system, and in place of 
the continuity equation in Eq. (213) the Poisson equation for the pressure may be solved; 
this equation is obtained from the Navier-Stokes equations by cross differentiation of the 
equations for the velocity components 0 i and Uj 

v2> = J77P -- Oj Oxj Ox~ 
where 

1 ( 00~ 0Uy 
s~ j=- - f - \  oxj +-37T-~ )" (28) 

Results and Discussion 

The flow behind a projection is calculated using quadratic tetragons. The region is 
constructed using an automatic data-generation program, and the output digital information 
is processed by means of graphical packets. The characteristic pattern of streamlines behind 
a projection and the distribution of the temperature field in the given region are shown 
in Fig. 4. 

Note, in conclusion, that the calculations are performed on an EC-1061 computer. The 
finite-element method, although it requires considerable working store of the computer (all 
the programs occupy around 2 Mbyte), is sufficiently effective, and permits the investigation 
of the most different forms of channels (annular, triangular, etc.) without considerable 
program modification. 

The use of service programs for pre- and postprocessor analysis of the information per- 
mits the conversion of the program complex from the purely "scientific" to the "engineering" 
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level and its application as an elementary basis for the creaton of various types of auto- 
mated-design systems. 

NOTATION 

0i, mean velocity in i-th direction; ui' , velocity pulsations in i-th direction; Ck, 
mean concentration of k-th component; T, mean temperature; p, density; Cp, specific heat 
at constant pressure; ~, viscosity of heat carrier; Pr, Prandtl number; PrD, diffusional 
Prandtl number; Rk, heat source (sink) on account of chemical reactions; d e, equivalent diam- 
eter; ST, mass source (sink) in chemical reaction; P, mean pressure; n, vector normal; 8, 
volume-expansion coefficient; k, kinetic energy of turbulence; e, dissipation rate of kinetic 
energy of turbulence; V 2, Laplacian operator; I, pulsations of a scalar quantity; #, instant- 
aneous or mean value of a scalar quantity. 

i. 

2. 

3. 

4. 

. 

6. 
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DYNAMICS OF Z-PINCH WITH A LIGHT LINER. 

i. DESCRIPTION OF THE MODEL AND CALCULATION OF DOUBLE-SHELL LINERS 

G. S. Romanov, A. S. Smetannikov, Yu. A. Stankevich, 
and V. I. Tolkach 

UDC 533.9 

The compression of a plasma by a plastic liner has been modeled computational- 
ly in the one-dimensional magnetic radiation gasdynamic approximation. The 
dynamics of the process has been considered with allowance for the deviation 
from local thermodynamic equilibrium. 

Intensive studies have been under way on the compression of a plasma by cylindrical 
shells (liners), driven toward the symmetry axis by the pressure of the intrinsic magnetic 
field. These studies have been stimulated by the potential extensive applications in obtain- 
ing plasmas with high parameters, producing ultrastrong pulsed magnetic fields, etc. High- 
power sources of short-wavelength radiation, arising as a result of thermalization of the 
kinetic energy when the liner "stops" at the axis, have been developed on this basis. Con- 
siderable progress in the studies has been made by using high-power nanosecond electrical 
generators as the power supply [i]. The generated current pulses of several megaamperes 
with a length of the order of i00 nsec allow the liner to be accelerated to velocities of 
several hundreds of kilometers per second (light liners with a mass of -i00 ~g/cm and an 
initial radius of -i cm). These studies call for a detailed investigation of the physics 
of the processes, which is very difficult to carry out experimentally. Of particular inter- 
est in such problems is the efficiency with which energy from the power supply is converted 
to the kinetic energy of the linear and then to radiant energy. Moreover, by means of simple 
analytical solutions it is possible to consider only individual aspects of the compression. 
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